REVIEW OF RESEARCH

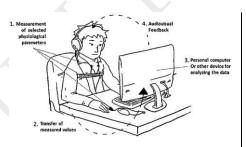
ISSN: 2249-894X IMPACT FACTOR : 5.7631(UIF) UGC APPROVED JOURNAL NO. 48514 VOLUME - 8 | ISSUE - 8 | MAY - 2019

KEYWORDS: Body sensor networks (BSNs),Instrumental Music, Brain activity, HVE test.

1. INTRODUCTION

In public network applications, Body Sensor Networks (BSNs) applications are in awesome interest in different fields, for example, medical care [1-3], games, amusement [4-6], militaryindustrial sector [7], and the social public field [8-10], and have continuously turned into an examination hotspot [10]. BSN is a sort of WSN which is shaped by physiological parameter sensors placed in the human body, on the body surface, or around the body [10].

EFFECT OF HINDUSTANI CLASSICAL MUSIC ON HUMAN BODY UTILIZING BODY SENSOR NETWORKS


Joyanta Sarkar¹, Sujit Kumar Ghosh², Gurpreet Kaur³

¹Department of Instrumental Music, RabindraBharati University.

²Department of Performing Arts, Assam University. ³Department of Music, Guru Nanak Dev University.

ABSTRACT:

Now a days, music plays an important role in every human life. Due to heavy work pressure, people listen music to relax.In this work, we present the effects of instrumental musicon the human body by using Body Sensor Networks (BSNs). We chose instrumental music because this type of music only uses musical components such as pitch, intensity, rhythm and timbre. It does not use any component such as verbal language (lyric). So, the effects get generated exclusively from the musical components. The simulation results of our approach are validated through sarode recitals.

BSNs comprise of smaller than expected remote sensors that are sent on a man's body to gather information identified with physiological parameters, for example, temperature, blood glucose level, or heart rate. This information is then transmitted to a central gateway device, for example a cellphone or PDA, which in turn can convey it to a healthcare provider or physician over the Internet. Music has an endless impact over the countries and people groups [35]. Every known culture on the earth has music. Music seems to be one of the basic

actions of humans. However, early music was not handed down from generation to generation or recorded. Hence, there is no official record of "prehistoric" music. Even so, there is evidence of prehistoric music from the findings of flutes carved from bones. The influence of music on society can be clearly seen from modern history. According to an ancient Indian text, SwaraSastra, the seventytwo melakarta ragas (parent ragas) control the 72 important nerves in the body. It is believed that if sings with one due devotion, adhering to the raga lakshana (norms) and srutishuddhi, (pitch purity) the raga could

affect the particular nerve in the body in a favourable manner. According to the Vedic Philosophy, yoga and music both are part of Nada Vidya. Yoga deals with realisation of anahata nada the sublime sound (extrasensory vibrations) of the eternal force of cosmic consciousness. Music pertains to the perception and expression of the infinite spectrum of the rhythmic flow of the ahata nada (perceivable sonic currents) pervading in Nature. Both have direct impact on the shat chakras hidden along the endocrine column and hence affect our physical as well as subtle bodies. The seven basic swaras (musical notes) of the musical octave have a one-to-one correspondence with these chakras (nuclei of subtle energy). The lower most (in the kava equina region along the erect endocrine column), viz., the Muladhara Chakra is associated with the swara "sa"; that means, the practice of chanting this particular musical note will have impact on awakening or activation of this particular chakra. Similarly, the chakras successively upwards in this direction namely, the Swadhisthana, Manipura, Anahata, Vishuddha, Agya and the topmost Sahastrara Chakra have correspondence respectively with the swaras "re", "ga" "ma", "pa", "dha" and "ni". Significantly, the order of thecompositions of these swaras in the "aroha" (ascending)and "avaroha" (descending) patterns of the Shastric musical tunes also match with the top-down (from Sahastrara to Muladhara) and bottom-up (from Muladhara to Sahastrara) directions of the flow of energy. Music has been used throughout human history to express and affect human emotion.

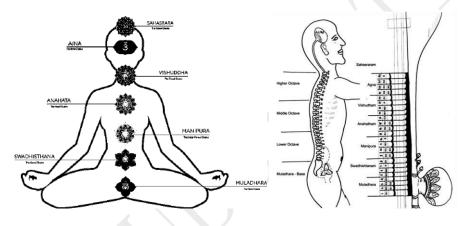


Image: Chakras - Energy Centres In the Human Body Image: Courtesy - Sangeetakalpadrumam

2. LITERATURE SURVEY

Albert Einstein is recognized as one of the greatest scientist who has ever lived. A little known fact about Einstein is that when he was young he did extremely poor in school. His grade school teachers told his parents to take him out of school because he was "too stupid to learn" and it would be a waste of resources for the school to invest time and energy in his education. The school suggested that his parents get Albert an easy, manual labor job as soon as they could. His mother did not think that Albert was "stupid". Instead of following the school's advice, Albert's parents bought him a violin. Albert became good at the violin. Music was the key that helped Albert Einstein become one of the smartest men who has ever lived. Einstein himself says that the reason he was so smart is because he played the violin. In general, responses to music are able to be observed. It has been proven that music influences humans both in good and bad ways. These effects are instant and long lasting. Music is thought to link all of the emotional, spiritual, and physical elements of the universe. Music can also be used to change a person's mood, and has been found to cause like physical responses in many people simultaneously. Music also has the ability to strengthen or weaken emotions from a particular event such as a funeral. Rhythm is also an important aspect of music to study when looking at responses to music. There are two responses to rhythm. These responses are hard to separate because they are related, and one of these responses cannot exist without the other. These responses are -

(1) The actual hearing of the rhythm and

(2) The physical response to the rhythm.

Rhythm organizes physical movements and is very much related to the human body. For example, the body contains rhythms in the heartbeat, while walking, during breathing, etc. Another example of how rhythm orders movement is an autistic boy who could not tie his shoes. He learned how on the second try when the task of tying his shoes was put to a song. The rhythm helped organize his physical movements in time. It cannot be proven that two people can feel the exact same thing from hearing a piece of music. Responses to music are easy to be detected in the human body. Classical music from the baroque period causes the heart beat and pulse rate to relax to the beat of the music. As the body becomes relaxed and alert, the mind is able to concentrate more easily. Furthermore, baroque music decreases blood pressure and enhances the ability to learn. Music affects the amplitude and frequency of brain waves, which can be measured by an electro-encephalogram. Music also affects breathing rate and electrical resistance of the skin. It has been observed to cause the pupils to dilate, increase blood pressure, and increase the heart rate. The Power of Music on Memory and Learning.Music is processed in all areas of the brain and has the ability to access and stimulate areas of the brain that may not be accessible through other modalities. Music beats have a very close relationship with heart beats. Music having **70-75** beats per minute equivalent to the normal heart beat of 72/minute has a very soothing effect likewise rhythms which are slower than 72 beats per minute create a positive effect on the mind, heart and body. Rhythms which are faster than the heart rate excite and rejuvenate the body. The flow of blood through the heart follows a very deliberate path to ensure that blood oxygenated from the lungs passes through major arteries and delivered to body tissue. This process occurs on an average of 72 times a minute, pumping about 2,000 gallons worth of blood every day.

A Contribution

In this section, we present our major contributions. First we proposed a model where we show the effect of instrumental music on human body. Second, we proposed a High Body Effect Message Algorithm (HBEMA) to generate the message when the effect is exceeded or equal to thethreshold value.

B Motivation

Recently instrumental music plays a vital role for our enjoyment as well as our treatment so there must be some algorithm to detect the effect of various instrumental music on our body.

C Pre-requisites

In this section we describe about body sensor network that we have used in our approach. BSNs are a kind of WSN which is formed by physiological parameter sensors placed in the human body, on the body surface or around the body. The main techniques it covers are sensors, data fusion, and network communication. It is not only a new type of universal health care, disease monitoring, and prevention solution, but also an important component of the so-called Internet of Things. Its main purpose is to provide an integrated ubiquitous computing hardware, software, and wireless communication technology platform, and an essential condition for the future development of ubiquitous health care monitoring systems.

2 Related Work

In [11] author proposed a graphical theoretical analysis of cortical thickness co-variations (as indirect indicator connectivity) to examine whether AP musicians differ from relative pitch musicians and non-musicians in small-world network characteristics. In [12] author proposed ashortandlong-term effects of listening to music and making music on functional networks and structural components of the brain. The specific influence of music on the developing brain is emphasized and possible transfer

effects on emotional and cognitive processes. The data on the potential of music making supports and facilitate neurorehabilitation. In[13] author proposed a gray matter volume differences in motor, auditory, and visual-spatial brain regions when comparing professional musicians (keyboard players) with a matched group of amateur musicians and non-musicians. Although some of these multiregional differences could be attributable to innate predisposition and represents structural adaptations in response to long-term skill acquisition and the repetitive rehearsal of those skills. In [14] author investigated the efficacy of music therapy techniques as an aid in improving mood and social interaction after traumatic brain injury or stroke where eighteen individuals with traumatic brain injury or stroke were assigned either standard rehabilitation alone or standard rehabilitation along with music therapy (3 treatments per week for up to 10 treatments). In [15] author evaluated the effect of a strength training program on anxiety, affect, and mood in a group of older adults (≥ 65 years). Twenty men and women participated in a 12-week strength training program. Participants were randomized to an intervention and a waiting list control group. Trait anxiety showed a decline in both groups. When mood profiles of participant'swereanalyzed across the initial 12-week of the study, a dimension of mood called Vigor-Activity significantly decreased in the control group while the intervention group'sscores did not change. The affect data showed that negative affect decreased significantlyin the intervention group following the training protocol.

Slno	Description	Raga Kedar	Raga Jayajayanti	Raga Adana		
1	Nature	Shaadava-Sampurna Shadav-Sampoorna		Shadav- SampoornaVakra		
2	Arohan	S M P, m P D n D P, m P S	S R G m P m G m P N S	S R m P d n S		
3	Avarohan	SNDP,mPDPM, SRS	S n D P m G R g R S	SdnPmPgmRS		
4	Thata	'hata Kalyan Khamaj		Asawari		
5	Timing	First Prahar of Night	6pm to 9pm	Last Night !2Pm- 3am		

3 Proposed Model

BSN plays an important role to detect the internal activity of the human body. The proposed model is shown in Fig.1. In Fig.1.When the instrumental music is generated, the signal is passed to thehuman brain through ear.We used body sensors to detect the internal activity of the human body. The computer interfaceis used to show the signal flow. Based on the different signal flowS= $\{S_1, S_2, ..., Sn\}$ different action can be taken.We used Action taking Center (ATC) where ATC takes an intelligent decision. ATC collects the data from the computer interface in a different time slot and checks the different status of the Heart, brain, pressure etc. ATC maintain a threshold valueATC_{threshold}. For the different signal the ratio of the variance is computed. If the ratio of the variance is equal or greater than the threshold value then ATC generates High Body Effect (HBE) message. We comparing the variance of the output patterns over one epoch.

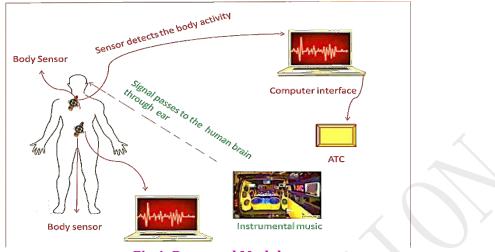


Fig.1. Proposed Model

The variance of the d-th dimension denoted as $A^2 d$ in a set of N-D dimensional vectors , $\Pi^n = [a_1^n, a_2^n, a_3^n, \dots, a_n^n]^T$ where n=1,2,...,n is given by

Where, the mean μ_d is given by

$$\mu_{\rm d} = \sum_{n=1}^{n} (\Pi_d^n) / N \qquad (2)$$

The total variance denoted as V for one epoch is given by

The variance ratio is computed as follows:

 $V_{ratio} = V_{out}/V_{in}$ (4)

Based on the value of V_{ratio} ATC generate the HBE message.

3.1 Algorithmto generate the HBE message

In this section, to validate our proposed model, we derived an algorithm named High Body Effect Message Algorithm (HBEMA) to make an intelligent decision of ATC. Where at first generate the instrumental music signal. Sensor detects the different status of the body after listening the music. We compute A_{d}^2 , V,Vratiohas given in Equation1,3,4.Set the ATC_{threshold} value if $V_{ratio} \ge ATC_{threshold}$ then generate HBE message.

1. Generate the instrumental Signal $S = \{S_1, S_2,, S_n\}.$	
2. SetATC _{threshold} value.	
3. Sensordetects the internal activity of the body and pass to the computer interface.	
4. For every signal $\{S_1, S_2, \dots, S_n\}$ do	
5. Calculate A_d^2	
6. Calculate V	
7. Calculate Vratio	
8. end for	
9. Compare ATC _{threshold} and V ratio	
10. If V _{ratio} ≥ATC _{threshold}	
11. Generate HBEmessage	

Algorithm 1. The HBEMA algorithm

4 RESULTS AND ANALYSIS

At the point when the instrumental music is produced, the sign is gone to the human cerebrum through ear. We utilized body sensors to distinguish the inner movement of the human body. The PC interface is utilized to demonstrate the sign stream. All the signals are recorded at Tripura Sundari District Hospital, Udaipur under typical room temperature and minimum uproarious environment. Recording has been done in two stages. All signs are taken in ten minutes length of time. At long last, recorded signs are prepared. We used 20patients and for each patient we used same raga for 30 minutes (Raga Kedar for 10 min, Raga Jayjayanti for 10 min, Raga Adana for 10 min) and take the Heart Rate Variability (HRV) test.

Patient Information-1	
-----------------------	--

Name of the Patient	Disease Suffer From	Profession	Code
AtanuSarkar	Cardiac Patient	Businessman	AS
Partha Biswas	Cardiac Patient	Businessman	PB
Sunil Mandol	Cardiac Patient	Medical Representative	SN
GoutamDey	Cardiac Patient	Teacher	GD
SurendraReang	Cardiac Patient	Farmar	SR
SantanuChakraborty	Cardiac Patient	Gram RojgarSevak	SC
Himangshu Pal	Cardiac Patient	Retired Govt Job	HP
KamatiReang	Cardiac Patient	House Wife	KR
Pratima Barman	Cardiac Patient	House Wife	PB
PadmaLochan Tripura	Cardiac Patient	Teacher	РТ

VOLUME - 8 | ISSUE - 8 | MAY - 2019

NidhuRnSaha	Cardiac Patient		Farmar	NS	
Pankaj Roy	Cardiac Patient		Teacher	PR	
JatindraReang	Cardiac Patient		Farmar	JR	
MuktajoyReang	Cardiac Patient		Farmar	MR	
Mantri Tripura	Cardiac Patient		Farmar	MT	
JharnaBibi	Cardiac F	Patient	House Wife	JB	
ArshadMiah	Cardiac F	Patient	Farmar	AM	
LutafaBegam	Cardiac F	Patient	Farmar	LB	
KajalRnBhadra	Cardiac F	Patient	Farmar	КВ	
Debasish Das	Cardiac F	Patient	Farmar	DD	
		Patient Infor	mation- 2		
Name of the Patient	Age	Blood Group	Weight	Height	
AtanuSarkar	57	B+	66 kg	162.56 cm	
Partha Biswas	43	B+	64 kg	160.02 cm	
Sunil Mandol	65	0 +	57 kg	167 cm	
GoutamDey	38	AB+	61.5 kg	161 cm	
SurendraReang	64	B+	57.3 kg	156 cm	
SantanuChakraborty	73	A+	74 kg	158 cm	
Himangshu Pal	29	AB -	63.4 kg	168 cm	
KamatiReang	65	0+	76 kg	165.3 cm	
Pratima Barman	39	B -	59 kg	164 cm	
PadmaLochan Tripura	64	AB+	63 kg	160 cm	
NidhuRnSaha 58 B+		76.2 kg	157.56 cm		
Pankaj Roy	64	B+	73 kg	160.03 cm	
JatindraReang	75	AB -	69.3 kg	155 cm	
MuktajoyReang	68	A+	74 kg	156.54 cm	
Mantri Tripura	52	B+	67 kg	163 cm	
JharnaBibi	34	A+	67.4 kg	161 cm	
ArshadMiah	67	B+	70.3 kg	158 cm	
LutafaBegam	63	B+	65.3 kg	159 cm	
KajalRnBhadra	59	AB+	67.3 kg	168 cm	
Debasish Das 62		B+	72.4 kg	162 cm	

Pulsebeat of Patient

Name of the Patient	Before Music	After Music	Remarks	
	Pulsebeat	Pulsebeat		
AtanuSarkar	92 Per Minute	79 Per Minute	Music Therapy Results	
Partha Biswas	101 Per Minute	84 Per Minute	Music Therapy Results	
Sunil Mandol	97 Per Minute	73 Per Minute	Music Therapy Results	
GoutamDey	98 Per Minute	79 Per Minute	Music Therapy Results	
SurendraReang	89 Per Minute	74 Per Minute	Music Therapy Results	
SantanuChakraborty	104 Per Minute	81 Per Minute	Music Therapy Results	
Himangshu Pal	107 Per Minute	79 Per Minute	Music Therapy Results	
KamatiReang	91 Per Minute	73 Per Minute	Music Therapy Results	
Pratima Barman	89 Per Minute	70 Per Minute	Music Therapy Results	
PadmaLochan	99 Per Minute	73 Per Minute	Music Therapy Results	

Tripura							
NidhuRnSaha	91 Per Minute		71 Per Minute]	Music Therapy Results	
Pankaj Roy	89 Per Minute]	Music Therapy Results	
JatindraReang	101 Per Minute		69 Pe	r Minute]	Music Therapy Results	
MuktajoyReang	95 Per	Minute	76 Pe	er Minute]	Music Therapy Results	
Mantri Tripura	90 Per Minute		73 Pe			Music Therapy Results	
JharnaBibi	101 Per Minute		81 Per Minute]	Music Therapy Results	
ArshadMiah	96 Per	Minute	74 Pe	r Minute]	Music Therapy Results	
LutafaBegam	83 Per Minute		74Per Minute]	Music Therapy Results	
KajalRnBhadra	108 Pe	r Minute	77 Pe	er Minute]	Music Therapy Results	
Debasish Das	103 Pe	3 Per Minute				Music Therapy Results	
				of Patient			
Name of the Patient			Music		usic	Remarks	
	Age	Blood Pressu	re	Blood Pressu	re		
AtanuSarkar	57	164/78		136/91		Music Therapy Results	
Partha Biswas	43	167/81		125/84	÷	Music Therapy Results	
Sunil Mandol	65	165/64		134/89		Music Therapy Results	
GoutamDey	38	161/63		125/81		Music Therapy Results	
SurendraReang	64	153/75		133/87		Music Therapy Results	
SantanuChakraborty	73	169/78		137/91		Music Therapy Results	
Himangshu Pal	29	157/71		125/83		Music Therapy Results	
KamatiReang	65	168/83		135/88		Music Therapy Results	
Pratima Barman	39	162/66		127/83		Music Therapy Results	
PadmaLochan Tripura	64	151/78		136/87		Music Therapy Results	
NidhuRnSaha	58	157/73		134/86		Music Therapy Results	
Pankaj Roy	64	148/62		134/90		Music Therapy Results	
JatindraReang	75	161/81		139/91		Music Therapy Results	
MuktajoyReang	68	162/74	7	143/89		Music Therapy Results	
Mantri Tripura	52	157/69		131/85		Music Therapy Results	
JharnaBibi	34	163/74		127/85		Music Therapy Results	
ArshadMiah	67	153/78		139/83		Music Therapy Results	
LutafaBegam	63	162/73		141/88		Music Therapy Results	
KajalRnBhadra	59	168/72		131/86		Music Therapy Results	
Debasish Das	62	157/79		134/87		Music Therapy Results	

We take the average value of V_{ratio} for each patient and the age limit of each patient's is $29 \ge age \le 75$.Before start our experiment we record the initial condition (pulse rate, pressure, sugar label etc.) of every patient. We set the ATC_{threshold}value 0.35. If $V_{ratio} \ge ATC_{threshold}$ then ATC generate the HBE message. Fig.2shows the first day's results of average V_{ratio} for 20patientand we use Raga Kedar, Raga Jaijawanti, Raga Adana [32][34] for different experiments.Fig.3. and Fig.4.for day- 2 and day- 3 respectively.

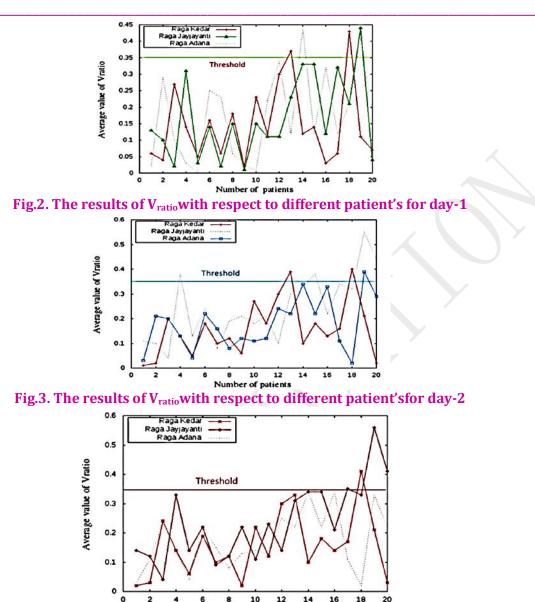


Fig.4. The results of V_{ratio} with respect to different patient's for day-3

Number of patients

5 CONCLUSION AND FUTURE WORK

In this work, we analyzed the effect of Instrumental music on human body using BSNs. We used Raga Kedar,Raga Jaijawanti and Raga Adana and we have taken 20 patients in our experimentation and for each patient we took the HRV test and analyze the effect of different Raga for different patients. In our future work, we try to improve the health of autistics patients by using this approach.

ACKNOWLEDGEMENTS

We would like to thank all parents and children who took part in the study. We would also like to thank Dr. JowharLalSarkar (Doctor of Homoeopathy), GoutamDey (Post Graduate Teacher, Mathematics, Tripura Govt.), UttamDey (Graduate Teacher, Science, Tripura Govt.), for her tremendous support and guidance throughout our work. We express our gratitude to all the people who contributed in any way at different stages of this research.

REFERENCES

1. Yoo, J.; Yan, L.; Lee, S.; Kim, H.; Yoo, H.J. A wearable ECG acquisition system with compact planar-fashionable circuit board-based shirt.*IEEE Trans. Inf. Technol. Biomed*.2009, *13*, 897–902.

2. Harrison, B.L.; Consolvo, S.; Choudhury, T. Using Multi-Modal Sensing for Human Activity Modeling in the Real World. In *Handbook of Ambient Intelligence and Smart Environments*, 1st ed.; Nakashima, H., Aghajan, H., Carlos Augusto, J., Eds.; Springer: New York, NY, USA, 2009; Volume 4, pp. 463–478.

3. Aziz, O.; Lo, B.; King, R.; Darzi, A.; Yang, G.Z. Pervasive Body Sensor Network: An Approach to Monitoring the Post-Operative Surgical Patient. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, Cambridge, MA, USA, 3–5 April 2006; pp. 4–18.

4. Conroy, L.; Ó'Conaire, C.; Coyle, S.; Healy, G.; Kelly, P.; O'Connor, N.; Caulfield, B.; Connaghan, D.; Smeaton, A.; Nixon, P. TennisSense: A Multi-Sensory Approach to Performance Analysis in Tennis. In Proceedings of the 27th International Society of Biomechanics in Sports Conference 2009, Limerick, Ireland, 17–21 August 2009.

5. Pansiot, J.; Lo, B.; Yang, G.Z. Swimming Stroke Kinematic Analysis with BSN. In Proceedings of the 2010 International Conference on Body Sensor Networks (BSN), Biopolis, Singapore, 7–9 June 2010; pp. 153–158.

6. Burchfield, R.; Venkatesan, S. A Framework for Golf Training Using Low-Cost Inertial Sensors. In Proceedings of the 2010 International Conference on Body Sensor Networks (BSN), Biopolis, Singapore, 7–9 June 2010; pp. 267–272.

7. Nesime, T.; Mark, B.; Reed, H.; Steve, M.; Stan, Z. Confidence-Based Data Management for Personal Area Sensor Networks. In Proceedings of the First Workshop on Data Management for Sensor Networks (DMSN2004), Toronto, Canada, 30 August 2004; pp. 24–31.

8. Li, H.B.; Takizawa, K.; Kohno, R. Trends and Standardization of Body Area Network (BAN) for Medical Healthcare. In Proceedings of the 2008 European Conference on Wireless Technology, Amsterdam, Netherlands, 27–28 October 2008; pp. 1–4.

9. Osmani, V.; Balasubramaniam, S.; Botvich, D. Self-Organising Object Networks Using Context Zones for Distributed Activity Recognition. In Proceedings of the ICST 2nd International Conference on Body Area Network, Florence, Italy, 11–13 June 2007; pp. 1–9.

10. Wai, A.A.P.; Fook, F.S.; Jayachandran, M.; Biswas, J.; Lee, J.E.; Yap, P. Implementation of Context-Aware Distributed Sensor Network System for Managing Incontinence Among Patients with Dementia. In Proceedings of the 2010 International Conference on Body Sensor Networks (BSN), Biopolis, Singapore, 7–9 June 2010; pp. 102–105

11. LutzJäncke, Nicolas Langer, and Jürgen Hänggi "Diminished Whole-brain but Enhanced PerisylvianConnectivity in Absolute Pitch" Musicians Journal of Cognitive Neuroscience Volume 24, Number 6

12.EckartAltenmu["]ller; and Gottfried Schlaug, "Neurologic music therapy: The beneficial effects of music making on neurorehabilitation" ,Acoust. Sci. & Tech. 34, 1 (2013)

13. Pollack, N. J. and Namazi, K. H. (1992). The effect of music participation on the social behavior of Alzheimer's disease patients. Journal of Music Therapy, 29, 54–67

14. SilvanoZanuso, John c. Sieverdes, Nicholas Smith, AttilioCarraro*and*Marco Bergamin"The effect of a strength training program on affect, mood, anxiety, and strength performance in older individuals",International Journalof Sport Psychology, 2012; 43: 53-66.

15. BrennanM,Palaniswami M, Kamen P. Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? Biomedical Engineering, IEEE Transactions on, Proc. IEEE Transactions on Biomedical Engineering, 2001, 48, 1342-1347

Joyanta Sarkar

Department of Instrumental Music, RabindraBharati University.